
Building First-Order Energy Modeling Intuition
in Computer Architecture Lectures

Christopher Torng
University of Southern California, Los Angeles, CA

Abstract
Computer architecture students today arguably do not have as
close a connection to energy as they do to performance. Specifi-
cally, they are not trained to reason about energy in a quantifiable
way. Architecture students are taught that performance and energy
are considered equally important. However, most course material
focuses on a performance-driven narrative, meaning that students
learn about processors, memories, networks, and systems with a
strong sense of the performance implications, but with little intu-
ition for the energy implications. On the other hand, VLSI students
concretely learn about energy, but they are immersed in a world of
gates and transistors and do not connect their understanding about
energy back up to the abstraction of SoC-level components. How
can we bridge this gap to enable architecture students to reason
about the energy implications of hardware design concepts, directly
within a computer architecture class? In this work, we attempt to
mitigate these challenges by introducing a teaching methodology
that integrates energy into pipeline diagrams. We include examples
of specific classroom tools including the representation of an en-
ergy map, and we show how pipeline diagrams augmented with
an energy map can enable first-order quantitative comparisons of
performance, energy, and power across different design points. The
approach is simple enough for lecture, in-class activities, and in
exams. We hope this approach can train future students in thinking
from first principles in evaluating performance-energy tradeoffs.
ACM Reference Format:
Christopher Torng, University of Southern California, Los Angeles, CA .
2023. Building First-Order Energy Modeling Intuition in Computer Archi-
tecture Lectures . In Workshop on Computer Architecture Education (WCAE
’23), June 17, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3605507.3610632

1 Introduction
Energy is as important as performance in computer architecture,
and this has been widely accepted for decades in both academia
and industry. However, architecture students trained around the
world in our university classes arguably do not have as close a
connection to energy as they do to performance. We attribute this
to a gap in traditional progression within computer engineering
courses. Students in a computer architecture course are trained
during lectures in microarchitectural concepts (e.g., pipelining, out-
of-order execution, branch prediction, multithreading), but they are

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WCAE ’23, June 17, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0253-2/23/06.
https://doi.org/10.1145/3605507.3610632

0 1 2 3 4 5 6 7

1 F D X M W

2 F D X M W

3 F D X M W

4 F D X M W

Cycles

E
n

er
gy

Transaction

More Cycles
Less

Energy
. . . . stall

. . . . stall
. . . stall . . .

Less Cycles

More
Energy

Students design
and reason about

energy costs in class

EF

ED

EX

EM

EW

Energy Map

= ___ pJ

= ___ pJ

= ___ pJ

= ___ pJ

= ___ pJ

5.0

...

1.1

3.2

Pipeline shapes can indicate
higher power scenarios and

lower power scenarios

A pipeline stage
with high energy cost

. . . stall . . .

Inst 0

Inst 1

Inst 2

Inst 3

Figure 1: Integrating Energy into Pipeline Diagrams— Students build
intuition about energy by associating more transactions with increasing
energy consumption. Together with an energy map which breaks the energy
down further, students can visualize high-level tradeoffs in performance,
energy, and power directly within a lecture.

primarily provided tools to reason about performance (e.g., pipeline
diagrams) and there is no similar first-order tool for energy. This
means that most architecture students have little guiding intuition
when asked howmuch energy it costs to make design decisions (e.g.,
add a branch predictor to a processor). These students do eventually
expand their understanding about energy, but often primarily after
leaving architecture class, typically in a digital VLSI class. However,
such courses immerse students in a very different abstraction with
gates, transistors, and wires. While the energy of a capacitor may
now be very concrete, there are few curriculums where the same
level of energy intuition is connected back to the abstraction of
SoC-level components previously described in architecture class.

The key insight made in this paper is that energy can be added
into pipeline diagrams in order to enable performance-energy trade-
off evaluations directly in computer architecture lectures. Simply
put, we will enable energy to be discussed quantitatively at a white-
board during lecture. One way to view the basic intuition is that
pipeline diagrams are often drawn with one axis advancing for-
wards in time in units of cycles, while the other axis represents
transactions. Transactions are often instructions in the context of
a processor, but they may also be packets in the context of a net-
work. More transactions represents more work, and therefore the
axis visually depicts increasing energy consumption. While we are
certainly not the first to observe the potential of this insight for
teaching purposes, the idea has not been built upon and integrated
in most curriculums to tap into its potential for education.

Paper Artifact: https://github.com/ctorng/torng-energy-intuition-wcae2023

https://doi.org/10.1145/3605507.3610632
https://doi.org/10.1145/3605507.3610632

WCAE ’23, June 17, 2023, Orlando, FL, USA Christopher Torng

We build from the concept of integrating energy into pipeline
diagrams and take steps to more concretely visualize energy. Fig-
ure 1 illustrates our approach of associating each unique letter
within the pipeline diagram with a per-access energy cost. This
energy is counted each time the letter appears, representing the
hardware resources within that stage. There is a procedure to assign
these numbers, and we prepare students to reason about relative
energy costs in class. The central teaching construct that results
is the energy map, a simple component-based energy model that
is shown already built in Figure 1. Once completed, the energy
map enables students to “see” energy directly from letters in their
pipeline diagrams (e.g., which letters are more expensive?). This al-
lows architecture students to reason about the energy implications
of different hardware design decisions from their pipeline diagrams,
directly within a computer architecture lecture.

Designing a course that builds upon this initial intuition can
be done in many ways. In this paper, we illustrate one methodol-
ogy that was used in a classroom setting in computer architecture
courses taught at USC. We include examples of specific classroom
tools including the representation of an energy map, pipeline dia-
grams for in-order and out-of-order cores, illustrations of energy
and performance across these design points which can now be
compared quantitatively in lecture, in-class activities with power-
performance plots, an exam question, and also a methodology to
grade such questions so as to properly drive the feedback loop in a
student’s mind that convinces them of their own mastery in critical
thinking. We hope that our examples can help develop stronger
energy narratives in future computer architecture courses by inte-
grating and building intuition about energy into lecture notes.

2 Background and Goals
Energy modeling is a core element of supporting infrastructure for
computer systems design-space exploration in both academia and
industry. This section overviews the merits of existing infrastruc-
ture for energy modeling from a lecture-oriented perspective.

2.1 Research-Grade Energy Modeling Tools
The computer architecture community has developed various en-
ergy modeling research tools and approaches to model energy at
various different levels of abstraction. Energy has been modeled
at the component level (e.g., CACTI [12] for SRAMs and mem-
ory macros), at the processor level (e.g., McPAT [11], Wattch [4]),
and at the design-specific level typically for hardware accelera-
tor designs using component-based energy lookup tables [2, 15].
Researchers have also built early design-space exploration frame-
works for domain-specific accelerators which also adopt table-based
approaches including Aladdin [13] and Accelergy [16]. It is worth
noting that because of the difficulty in creating accurate high-level
energy models, recent works are increasingly relying directly on
detailed gate-level power estimation, especially for domain-specific
hardware accelerators [5, 10, 14].

Are energy modeling tools used in computer architecture
research suitable for a lecture environment? — While these
tools are powerful, they are designed to estimate energy at scale
across tens, hundreds, or even thousands of workload traces. Instead
of building intuition for how to reason about energy, they are

instead designed to produce large datasets of results, which can be
analyzed to gain insights about a given design space. However, just
as pipeline diagrams are taught in lectures and then extrapolated
to large-scale performance models using tools like gem5 [3] in
research labs, the community needs a similar first-order energy
modeling approach suitable for a whiteboard before students begin
to use large-scale energy modeling tools.

2.2 Course Textbooks
Some literature is explicitly written for the classroom in the form of
course textbooks which discuss power and energy. Hennessy and
Patterson [7] is the classic textbook in the field, and others exist as
well including Dubois [6] which can be used in an advanced course.
These textbooks often introduce power and energy coupled with an
overview of semiconductor technology trends. The texts may even
dedicate an entire chapter to the fundamental first-order energy
and power equations, including 𝐸 = 1

2𝐶𝑉
2 and 𝑃𝐷 = 1

2𝛼𝐶𝑉
2𝐹 , and

their implications on architecture [6]. However, once computer
architecture concepts are explored in detail, the discussion is driven
primarily by performance metrics, and energy is only discussed in
passing. One indication of this is that there are very few power (or
energy) versus performance plots in either Hennessy and Patterson
or Dubois in the discussion of pipelining, caching, out-of-order ex-
ecution, vector, VLIW, multithreading, and other classic techniques.
We attribute this to the lack of tooling available for students to gain
intuition about energy, in contrast to performance. Finally, some
research literature such as Horowitz [8] include quantified absolute
energy numbers (e.g., instruction energy breakdowns) in a 45 nm
technology, with Jouppi et al. updating these numbers in a 7 nm
technology [9]. While very useful, it is not immediately obvious
how to connect these numbers into the classroom.

How can we integrate more energy-driven discussion into
lecture without completely re-writing our course textbooks?
— We will likely continue to rely on these well-written classic text-
books in our teaching. However, in order to integrate more energy-
driven discussion into class, we may be forced to develop new
material with little support from the texts. We make a key obser-
vation that enables both needs to be met. We note that pipeline
diagrams are already prevalent in most existing course textbooks.
By specifically building a first-order energy model on top of these
diagrams (as opposed to some other device), we can freely augment
energy-driven discussion wherever a pipeline diagram is already
present. This allows us to maintain a parallel narrative about energy,
while still following along with the existing classic textbooks.

2.3 Design Experiences in the Classroom
Many university courses include design experiences that are ex-
plicitly designed for the classroom. These experiences simplify the
infrastructure to run research-grade performance and energy simu-
lators such as gem5 [3]. Students may even work with FPGAs and
ASIC tool flows. These tools can generate performance and energy
reports for each hardware design point in the project.

Are teaching-grade course projects built around simula-
tors already sufficient to train students in building intuition
about energy? — Design experiences have various weaknesses
when deployed on their own, without a corresponding first-order

Building First-Order Energy Modeling Intuition in Computer Architecture Lectures WCAE ’23, June 17, 2023, Orlando, FL, USA

Ecore = 1/2 Ceq,core V
2

Estage = 1/2 Ceq,stage V
2

F

Ceq,F

D

Ceq,D

X

Ceq,X

M

Ceq,M

W

Ceq,W

The core energy is broken down by
pipeline stages which are accessed
with different EF, ED, EX, EM, EW

costs per stage.

CV

Ceq,core

The entire core is "accessed"
to execute an instruction at
Ecore cost (e.g., 2pJ / inst).

The capacitor and its
fundamental energy
equation are already
familiar to students.

E
q

u
at

io
n

E
n

er
gy

 M
od

el
in

g
 I

n
te

rp
re

ta
ti

on

(a) (b) (c)

Core

E = 1/2 CV2

V

Figure 2: Energy Intuition Road Map — We build intuition for energy
from (a) the fundamental energy equation for an ideal capacitor, (b) the
insight of viewing a processor core as some 𝐶𝑒𝑞,𝑐𝑜𝑟𝑒 , and (c) breaking
the hardware down further into pipeline diagram letters with different
𝐶𝑒𝑞,𝑠𝑡𝑎𝑔𝑒 and different energies per access.

model introduced in the lectures. The most glaring sign of students
lacking intuition is the tendency to believe the tool and to write
down exactly what the tool said (e.g., “this design point is better
than that design point, because the tool reports their powers as X
milliwatts and Y milliwatts and X is smaller than Y”). Unfortunately,
tools can be used incorrectly, and the more problematic part is that
these design experiences often emphasize more how to use the
specific tools, as opposed to teaching students how to reason about
energy. Another weakness is that design experiences are usually de-
signed around a specific, narrow design space (e.g., a simple RISC-V
core) due to the challenges in developing high-quality teaching
infrastructure. Many architecture concepts simply cannot be cov-
ered and are left to the side. Finally, in most universities, course
lectures occupy more time than labs do in terms of the total amount
of time in which students engage with the course material. In order
for energy to be considered at equal status with performance, the
lectures themselves must be designed to make the priorities clear.

2.4 Industry-Grade Energy Modeling Tools
Lectures that teach a first-order energy modeling approach will
ideally transition cleanly to commercial tools that students are
likely to use after joining the workforce. These detailed, industry-
grade energy models for complex ASIC designs are composed of
gate-level netlists, per-net activities, technology constraints and
libraries, and commercial power estimation tools [1]. To a large
extent, these commercial tools are built upon the same component-
based energy modeling approach as we describe in this work. Our
abstractions are simply at a higher level. For example, students
count pipeline diagram letters (instead of per-net activities) and
use energy maps (similar to liberty files) for per-access energy
costs. The approach is largely hierarchical and lends itself to clean
transitions to industry-standard methodologies.

In summary, many architecture students struggle to think from
first principles about tradeoffs in performance and energy. There
is a need for a first-order energy modeling approach that can be
integrated into lectures to supplement existing teaching methods.

3 Classroom Mechanisms for Energy
We describe a specific approach and course methodology, but there
are many ways to develop course materials based on the idea that
pipeline diagrams can express both performance and energy. This

Base Assumptions

Ealu

Any 32-bit
ALU operation

Emul

32-bit multiply
operation

Erf

32-bit read / write
to register file

E$

32-bit read / write
to L0 cache controller

Energy Map for Single-Issue Five-Stage Pipeline

0.2 pJ 2.0 pJ 3.0 pJ 5.0 pJ

F D X M W

fetch the
instruction

EF ED EX EM EW

EF = ED = EX = EM = EW =1.0 x E$

read 1-2 srcs

1.5 x Erf

bypass network

+ 1.0 x Ealu

0.5 x Ealu

half alu and
half mul ops

+ 0.5 x Emul

0.2 x E$

infrequent
loads and stores

1.0 x Erf

write 1 dst

5.0 pJ 4.7 pJ 1.1 pJ 1.0 pJ 3.0 pJ

Filled by Student

Provided by Instructor

Build the energy
map from the

understanding
of what happens
within each stage

Figure 3: Example Energy Map for Five-Stage Pipelined Processor —
Energy maps allow students to reason about the energy costs of pipeline
diagram letters. This example shows energy costs for 𝐸𝐹 , 𝐸𝐷 , 𝐸𝑋 , 𝐸𝑀 , and
𝐸𝑊 using the provided base assumptions. Students will justify each term.

section will first introduce our approach to building student intu-
ition for reasoning about energy. We then illustrate examples of
energy maps, which are the primary first-order tool for building
intuition about energy alongside the pipeline diagram. We pro-
vide example pipeline diagrams for various microarchitectures and
illustrate how power-performance plots can be created using quan-
titative numbers from this tooling.

3.1 Building Intuition about Energy
Because students have different backgrounds upon entering a com-
puter architecture class, we build intuition for energy from funda-
mental equations. Figure 2 shows a series of figures that bridge be-
tweenwhat is taught in introductory physics classes (i.e., 𝐸 = 1

2𝐶𝑉
2)

and complex hardware units with per-access energy costs (e.g., a
processor or other SoC-level block). Figure 2(a) shows the funda-
mental energy equation representing an ideal capacitor charging
and discharging, and Figure 2(b) shows how an entire processor can
be “accessed” in order to execute an instruction with some energy
cost, corresponding to a single, fixed, equivalent capacitance of
𝐶𝑒𝑞,𝑐𝑜𝑟𝑒 charging and discharging. Note that if we pause at this
abstraction and do not build any further (e.g., suppose that an in-
struction always costs 2 pJ regardless of which instruction it is),
then we have created a simple instruction-based energy model
that can be surprisingly useful in introductory lectures when dis-
cussing simple in-order pipelines. For example in Figure 1 assuming
2 pJ per instruction, one transaction costs 2 pJ and four transactions
costs 8 pJ, making it clear how energy increases down the axis.
Furthermore, many pipeline effects can be quantified. For example,
a branch misprediction would fetch instructions and then squash
them, representing wasted work and still adding to the total energy
cost. Different aspect ratios in a pipeline diagram can represent
lower-power shapes (e.g., few instructions that stall for many cycles,
wide and short) and higher-power shapes (e.g., many instructions
that complete quickly back-to-back, tall and narrow). Instruction-
based energy models tend to model simple pipelines fairly consis-
tently because most instructions access similar hardware resources.
However, in more complex systems including out-of-order cores

WCAE ’23, June 17, 2023, Orlando, FL, USA Christopher Torng

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

2

4

6

8

10

12

14

16
32-bit fmac

32-bit fmul

bfloat fmac32-bit mac*
32-bit mul*

32-bit add
bfloat fmul bfloat fadd 32-bit fadd

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
32-bit fmac

32-bit fmul

bfloat fmac
32-bit mac*
32-bit mul*

32-bit faddbfloat fadd
32-bit add

bfloat fmul

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

A
re

a
 (

u
m

2
)

Random Data
@ 1.1 V

0.06 pJ
0.28 pJ

0.02 pJ
0.10 pJ

Small Data
@ 1.1 V

Operator
in 45nm

8-bit add
32-bit add

Random Data
@ 0.9 V

Small Data
@ 0.9 V

Horowitz
ISSCC 2014

@ 0.9 V

0.04 pJ
0.19 pJ

0.01 pJ
0.07 pJ

0.03 pJ
0.10 pJ

E
n

er
g

y
 (

p
J)

Delay (ns) Delay (ns)

Energy (Post-Layout) Energy (Scaled)

0.45 pJ
7.70 pJ
3.57 pJ

0.05 pJ
1.89 pJ
2.00 pJ

8-bit mul
32-bit mul

32-bit mul*

0.30 pJ
5.15 pJ
2.39 pJ

0.03 pJ
1.27 pJ
1.34 pJ

0.20 pJ
3.10 pJ

3.10 pJ*

1.00 pJ
2.56 pJ
0.74 pJ
4.81 pJ

0.91 pJ
2.47 pJ
0.70 pJ
4.75 pJ

16-bit fadd
32-bit fadd
16-bit fmul
32-bit fmul

0.67 pJ
1.71 pJ
0.49 pJ
3.22 pJ

0.61 pJ
1.65 pJ
0.47 pJ
3.18 pJ

0.40 pJ
0.90 pJ
1.10 pJ
3.70 pJ

Random Data
@ 1.1 V

Figure 4: Area, Energy, and Delay of Various Operators in 45nm Technology — Numbers are collected post-layout for both area and energy in a
commercial ASIC toolflow by sweeping target clock period across a large range. Each curve only shows the data points when operators meet timing. Table
energy numbers correspond to the “knee” of the curve and reflect a semi-aggressive timing constraint. Random Data = uniform random bits toggling; Small
Data = restricts the data range to [-0.5, 0.5] for floating point and uniform random in the lowest quarter of bits for integer; Scaled = energy scaling 1.1 V to
0.9 V with 1

2 𝐶𝑉
2 to compare with [8]; Horowitz Data = [8]; (*) = truncated result of lower 32 bits for 32-bit mul, unclear whether this was assumed in [8].

and hardware accelerators, transactions can take different paths
and resources may have more complex interactions.

We move one level deeper to pipeline diagram letters and a
pipeline-stage-based energy model. Figure 2(c) shows how we
can break the single, monolithic 𝐶𝑒𝑞,𝑐𝑜𝑟𝑒 into multiple equivalent
capacitances. For example, in a simple traditional five-stage pipeline
wemight have𝐶𝑒𝑞,𝐹 ,𝐶𝑒𝑞,𝐷 ,𝐶𝑒𝑞,𝑋 ,𝐶𝑒𝑞,𝑀 , and𝐶𝑒𝑞,𝑊 corresponding
to five different per-access energy costs. An instruction that flows
through the pipeline would access each stage and accrue each incre-
mental energy cost. A similar understanding can be applied to other
hardware designs, including a pipeline that supports out-of-order
execution with multiple execution pipes (e.g., Y-stages for multiplier
pipe, L-stages for load pipe, S-stages for store pipe, I-stage for issue
to functional units, C-stage for commit stage, etc.). A pipeline-stage-
based energy model allows transactions that take different paths
through the hardware to have different energy costs. The method
extends to non-processor pipelines as well including pipeline stages
in multi-hop interconnection networks and pipelined caches. This
narrative leads us to the concept of an energy map which simply
gathers these ideas into one centralized place.

3.2 Energy Maps
Energy maps are the key teaching construct in our approach. The
energy map is a centralized construct that gathers all of the pipeline-
stage-based energy models for a given hardware design into one
place. More concretely, it is the set of all unique pipeline diagram
letters as well as their mappings to per-access energy costs. Figure 3
illustrates an energy map for a simple, five-stage pipeline. The
instructor provides the base assumptions, and students fill in the
per-access energy costs for each pipeline diagram letter. In this
section, we discuss both of these two parts in detail.

3.2.1 Base Assumptions The primary role of these numbers is to
abstract the technology for an audience of computer architecture
students. These numbers should reflect reasonable trends in a mod-
ern technology. They should be abstract enough to shift concern
away from the details of the VLSI implementation (e.g., cell place-
ment density, wire congestion, metal stacks).

We capture two major categories of hardware that students can
consider as building blocks: combinational logic (e.g., ALU and mul-
tiplier logic) and table-based lookup (e.g., register files and SRAMs).

Fairly Accurate Less Accurate

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

mul

addi

mul

addi

mul

lw

lw

lw

lw

lw

Energy Map Worksheet

Explain why in one sentence (for each)

Figure 5: Reasoning with
Energy Maps— Craft a sequence
of five instructions where the en-
ergy estimate with your energy
map will be fairly accurate. Craft
another sequence that will be far
less accurate given the assump-
tions made in your energy map.

Figure 3 shows how the instructor provides arithmetic logic energy
numbers with 𝐸𝑎𝑙𝑢 and 𝐸𝑚𝑢𝑙 as well as table-based lookup energy
numbers with 𝐸𝑟 𝑓 and 𝐸$. After being given a reference within
these two categories, students can reason about the energy costs
of other logic in terms of these base assumptions. For example,
the five-stage pipeline supports full bypassing from the X-stage,
M-stage, andW-stage to the D-stage. A student may reason that the
bypass network within the decode stage is of similar complexity
and in the same category as the ALU. They may then estimate
1 × 𝐸𝑎𝑙𝑢 , or one ALU access worth of energy cost, to approximate
the energy cost of using the bypass network in the D-stage.

It can be challenging for instructors to find reasonable base as-
sumption energy numbers. We provide pointers to literature and
also supplement our own studies to help shed light on how these
numbers can be consistently produced for different technologies
and future lectures. Horowitz [8] provides quantified absolute num-
bers to estimate instruction energy breakdowns in a 45 nm tech-
nology. We illustrate our own study of area, energy, and delay in
the same 45 nm technology in Figure 4, using post-layout numbers
produced in a commercial ASIC toolflow. Each curve represents an
operator (e.g., a 32-bit floating-point operation) and plots points
for different final post-layout designs produced at the given target
clock periods. The y-axes show the best area and energy achieved
by the commercial tools for each target clock period.

The data shows how picking a single number for each operator
is non-trivial. First, an entire curve of data exists just for sweeping
the target clock period. Note how area and energy rapidly increase
when an operator targets a higher frequency (e.g., 32-bit fmul in-
creases from roughly 5 pJ per access to 9 pJ per access when pushed
from 750MHz to 1.0 GHz). Also, energy fundamentally depends on
the input data. The table numbers in Figure 4 show how uniform

Building First-Order Energy Modeling Intuition in Computer Architecture Lectures WCAE ’23, June 17, 2023, Orlando, FL, USA

random toggling of the data field bits (i.e., “Random Data”) pro-
duces much higher energies for each operator compared to using
low-magnitude data that is skewed towards zero (i.e., “Small Data”).

In summary, the table data shown in Figure 4 roughly agrees
with the literature data in Horowitz [8] assuming low-magnitude
data with semi-aggressive timing constraints. We hope this study
helps shed light on how such numbers can be produced from a
commercial ASIC toolflow and a given technology.

3.2.2 Assigning Per-Access Energy Numbers Figure 3 also demon-
strates how students can reason about energy by building from
their own understanding of the events within each pipeline stage.
The key intuition is that course lectures teach students about
the microarchitecture, and students use that knowledge to
build their energy maps. For example, students know that the
writeback stage (W) writes a value to the destination in the register
file. Students can estimate that this charges 1 × 𝐸𝑟 𝑓 of energy cost.
Energy maps may encode specific assumptions. For example, the
execute stage (X) computes an arithmetic operation, but students
may reason that not every instruction is an ALU or a multiply
operation and therefore assign to the X-stage the average of the
two energies for accessing the ALU and the multiplier, reflecting a
scenario in which half of the instructions access the ALU and the
other half access the multiplier.

Our approach firmly adheres to the mantra that “all models are
inaccurate, but some are useful”. The pipeline-stage-based energy
map by definition does not have enough detail to be highly accurate.
We must assign a single number to represent the many ways to
access a given pipeline stage. We will see in the next section, how-
ever, that high-level trends produced by energy maps to compare
performance and energy are remarkably similar to the intuition an
experienced architect would expect.

Because our goal is to teach students to reason about energy, it
is less important for the energy maps to be highly accurate. It is
far more important for students to instead realize why their energy
maps may be inaccurate. Figure 5 shows an in-class activity work-
sheet in which students can reason about the quality of their energy
maps. Students are asked to produce a sequence of five instructions
for which their energy estimate would be fairly accurate, and an-
other sequence where the energy estimate would be less accurate.
For example, every X-stage letter in Figure 3 assumes that instruc-
tions access either the ALU or the multiplier (with 50% probability).
A less accurate instruction sequence could be a sequence of five
nop instructions, which access neither unit, or perhaps a sequence
of five load-word instructions, since the energy map assumes that
only 20% of the instructions are memory-related.

3.3 Evaluation with Power-Performance Plots
By combining pipeline diagrams with energy maps, students are
equipped to compare the performance, energy, and power of dif-
ferent microarchitectures. Figure 6 shows how we can compare a
single-issue, in-order core to a four-way superscalar, out-of-order
core with an issue queue, reorder buffer, and register renaming
mechanisms. The results show a 1.4× speedup by trading away
4.9× power, which reflects the general intuition of experienced
architects for the tradeoffs of these two types of cores.

N
or

m
al

iz
ed

P
ow

er

Normalized
Performance

4.9
power

Dynamic Cycle
Transaction 0 1 2 3 4 5 6 7 8 9 10 11 12

1 x1, x2, x3 F D I Y0 Y1 Y2 Y3 W C

2 x4, x1, x3 F D i ··· ··· ··· I X W C

3 x5, x2, x3 F D I X W r ··· ··· ··· C

4 x6, x2, x3 F D i I X W r ··· ··· C

mul

addi

addi

addi

Latency

Dynamic Cycle
Transaction 0 1 2 3 4 5 6 7 8 9 10 11 12

1 x1, x2, x3 F D X0 X1 X2 X3 M

2 x4, x1, x3 F D D D D X0 X1 X2 X3

3 x5, x2, x3 F F F F D X0 X1 X2 X3

4 x6, x2, x3 F D X0 X1 X2 X3

mul

addi

addi

addi

Energy Power

14
cycles

59 pJ
energy

4.3 pJ
per cycle

F D M WX0 X1 X2 X3

X

F D W

Y0 Y1 Y2 Y3

issue
queue

I

reorder
buffer

C

W

M W

M W

M W

13

13

4 EFTotal Energy = + 4 ED + 4 EX0

+ 4 EM + 4 EW

4 EFTotal Energy = + 4 ED + 1 EY0

+ 3 EX + 4 EW

+ 4 EI

+ 4 EC

+ 1 EY1 + 1 EY2 + 1 EY3

+ 4 EX1 + 4 EX2 + 4 EX3

Design A

Design B

D
es

ig
n

A
D

es
ig

n
B

10
cycles

210 pJ
energy

21.0 pJ
per cycle

A

B

1.4 speedup

Figure 6: Pipeline Diagram Plots — Power-performance plots for an
in-order, eight-stage pipeline processor and a four-way superscalar, out-
of-order processor. New pipeline diagram letters present in Design B:
i = waiting in issue queue (no energy cost), r = waiting in reorder buffer
(no energy cost), I = issue stage, Yn = multiplier pipe stages, C = commit
stage. Energy map for Design A: 𝐸𝐹 = 5.0 pJ (fetch); 𝐸𝐷 = 4.7 pJ (count
1.5 × 𝐸𝑟 𝑓 to read 1–2 srcs, 1.0 × 𝐸𝑎𝑙𝑢 for bypass network); 𝐸𝑋 0 to 𝐸𝑋 3 =
evenly divide 1.1 pJ (assume half multiplies and half ALU ops); 𝐸𝑀 = 1.0 pJ
(assume 20% of instructions are memory ops); 𝐸𝑊 = 3.0 pJ (write to register
file). Energy map for Design B: 𝐸𝐹 = 5.0 pJ (fetch); 𝐸𝐷 = 12.4 pJ (count
1.0 × 𝐸𝑟 𝑓 for rename table access, 1.0 × 𝐸𝑟 𝑓 for ROB access, 2.0 × 𝐸𝑟 𝑓 for
issue queue access, 2.0×𝐸𝑎𝑙𝑢 for combinational structural hazard-checking
logic); 𝐸𝐼 = 15.6 pJ (count 2.0 × 𝐸𝑟 𝑓 for issue queue access, 1.0 × 𝐸𝑟 𝑓 for
scoreboard access, 2.0 × 𝐸𝑟 𝑓 for physical register file access, 3.0 × 𝐸𝑎𝑙𝑢 for
combinational dependency-checking logic); 𝐸𝑊 = 6.6 pJ (count 2.0 × 𝐸𝑟 𝑓
for physical register file access, 1.0 × 𝐸𝑎𝑙𝑢 for combinational issue queue
logic, 1.0 × 𝐸𝑎𝑙𝑢 for combinational ROB update logic, 1.0 × 𝐸𝑎𝑙𝑢 for extra
combinational logic); 𝐸𝐶 = 12.2 pJ (count 1.0×𝐸𝑟 𝑓 for architectural register
file access, 2.0 × 𝐸𝑟 𝑓 for physical register file access, 1.0 × 𝐸𝑟 𝑓 for ROB
access, 1.0 × 𝐸𝑎𝑙𝑢 for extra combinational logic); 𝐸𝑋 = 0.2 pJ (ALU energy);
𝐸𝑌 0 to 𝐸𝑌 3 = evenly divide 2.0 pJ (multiplier energy). Please tweak these
numbers to correspond to what is taught in the lectures.

WCAE ’23, June 17, 2023, Orlando, FL, USA Christopher Torng

Design A is the classic, five-stage pipeline, but with the X-stage
pipelined with four stages (i.e., X0, X1, X2, and X3 stages). The
pipeline supports the addi and mul instructions and other ALU
instructions. Regardless of which operation is being computed, all
instructions must advance through the full pipeline. The energy
map is similar to the one shown in Figure 3, but with the X-stage
energy distributed over the four stages. Design B is a quad-issue
superscalar core, and hence we draw four F-stages executing si-
multaneously in the same column. The pipeline runs at the same
clock frequency as in the previous design. The load and store pipes
are not drawn but would be set in parallel with the X-pipe (ALU)
and Y-pipe (multiplier). Additional structures are drawn including
the issue queue (i.e., Tomasulo-style), reorder buffer, and physical
and architectural register files with a commit stage. Note that the
energy maps for both microarchitectures assume some details (e.g.,
number of ROB entries) described in lecture, but left out in this
paper for brevity.

The final power-performance plot in Figure 6 shows how the
pipeline letters can be counted and the key metrics quantified in a
table (and plotted on a whiteboard) to compare the two designs. The
second design is far more expensive in energy cost compared to the
relative gains in performance. Despite the high level of abstraction
of energy maps, the relative trends they enable students to visualize
tend to be surprisingly reliable. Such plots can be extended to
compare many other microarchitectures in a similar way, as long
as there is a pipeline diagram present. In summary, students learn
from lectures about the hardware structures that are present in
each pipeline stage. They then apply their knowledge to build an
energy map accompanying the pipeline diagram. This approach
can enable evaluating simple in-order cores, complex out-of-order
cores, a ring network, or even a multicore system.

3.4 Grading Approach
There are two observations that set the grading approach for this
methodology apart from others. First, there is no authoritative
“correct” answer when building an energy map. Many different
numerical answers can be similarly correct, as we previously sug-
gested in Figure 5, as long as the strengths and weaknesses of the
assumptions made are acknowledged by the student. Second, this
methodology is designed to train students to think critically about
energy costs and tradeoff evaluation, and the grading methodology
should therefore reward critical thinking. For example, if a student
describes why a design decision will reduce performance, he or she
should receive a similar grade as another student who chooses to
discuss a design decision that improves design metrics instead.

We suggest an approach where grades primarily reward stu-
dents for taking a position, arguing from the evidence they
collect that their stance is reasonable. These evaluations can be
several sentences long (e.g., one sentence to take a position, one sen-
tence in support of the position, and one sentence why the position
may be weaker than expected). In particular with this approach,
a student can make some mistakes in their pipeline diagrams and
energy map, and this is not to be penalized (much). However, they
must still use that data to support a position. After all, engineers in
both academia and industry frequently make small mistakes in their
models while still delivering significant value in their analyses.

Dynamic
Transaction

1 F D X0 X1 M W

2 F D D D X0 X1 M W

3 F F F D X0 X1 M W

4 F D X0 X1 M W

5 F D X0 X1 M W

6 F D X0 – – –

7 F D – – – –

8 F – – – – –

9 F D X0 X1 M W

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 F D X0 X1 M W

2 F D D D X0 X1 M W

3 F F F D X0 X1 M W

4 F D X0 X1 M W

5 F D X0 X1 M W

6 F D X0 X1 M W

F D M WX0 X1

1 int add_reduce(int* aptr, int size)

2 {

3 int result = 0;

4 for (int i = 0; i < size; i++)

5 result = result + aptr[i];

6 return result;

7 }

 addi x4, x0, 100 # size

 addi x1, x0, 0 # result

L1:

lw x2, 0 (x5) # aptr[i]

 add x1, x1, x2 # result +=

 addi x4, x4, -1 # decr size

 addi x5, x5, 4 # ptr bump

 bne x4, x0, L1 # loop

 sw x1, 0 (x6) # ret result

lw x2, 0 (x5)

add x1, x1, x2

addi x4, x4, -1

addi x5, x5, 4

bne x4, x0, L1

sw x1, 0 (x6)

lw x2, 0 (x5)

opA

opB

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw x2, 0 (x5)

add x1, x1, x2

addi x4, x4, -1

addi x5, x5, 4

bne x4, x0, L1

lw x2, 0 (x5)

Dynamic
Transaction

Design: Single-Issue Six-Stage Pipeline Program: Simple Reduction Loop

Corresponding Assembly

squashed
instruction

energy

correct
prediction

(a) Scenario 1 – Execution without dedicated branch prediction hardware

(b) Scenario 2 – Execution with branch predictors in F-stage and D-stage

Figure 7: An Exam Question for In-Order Processor Energy with
Branch Prediction — A single-issue six-stage pipeline executes a simple
reduction loop, with the corresponding assembly code as shown. Under
which scenario is the energy higher: with no dedicated branch prediction
hardware? or with branch predictors in F-stage and D-stage? Assume that
branches resolve in X1-stage.

4 Practice Exam Question
We applied our methodology to introduce energy-driven discussion
into EE 557 Computer Systems Architecture at the University of
Southern California. This is a graduate course and is taken primarily
by students who have already had exposure to computer systems
organization. The topics covered in lecture materials start with
basic pipelined processors and quickly advance through advanced
concepts including superscalar issue, out-of-order execution, reg-
ister renaming, branch prediction, speculative execution, memory
disambiguation, SIMD and vector processors, VLIW processors, ver-
tical and simultaneous multithreading, interconnection networks,
and multicore systems. Although we chose an advanced class, there
is no reason why these techniques could not be applied in more
introductory courses as well.

Figure 7 shows an exam question that explores energy in a single-
issue, six-stage in-order pipeline with and without branch predic-
tors. The energy map for this design without dedicated branch
prediction hardware is similar to that shown in Figure 3, but with
the X-stage energy distributed over the two stages. The pipeline

Building First-Order Energy Modeling Intuition in Computer Architecture Lectures WCAE ’23, June 17, 2023, Orlando, FL, USA

pc_plus4

result_sel_X1

ir[31:0]

jr

eq_X1

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_D

+

alu_fn_X0

op2_sel_D

pc_sel_F

jbtarg

alu_fn
_X1

M Stage W Stage

ir_FD

F Stage D Stage X0 Stage

sd_X1M

result
_X1M

result
_MW

pc_F pc_FD

op1_DX0

sd_DX0

btarg_DX0

op2_DX0

always pc_plus4

btarg
jtarg

sd_X0X1

temp_X0X1

btarg_X0X1

X1 Stage

reg_
en_D

reg_
en_F

op1_
byp_
sel_D

bypass_from_X1
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_sel_F

Figure 8: Datapath for Single-Issue, Six-Stage Pipelined Processor

splits the X-stage into X0 and X1 stages, and branches resolve in the
X1-stage. The detailed datapath diagram is shown in Figure 8.

The core runs a program with a simple reduction loop that sums
an array of integers and returns the result. The RISC-V assembly
has the main loop at label L1. We consider two scenarios executing
the loop without dedicated branch prediction hardware (Scenario 1)
and with branch prediction hardware in F-stage and D-stage (Sce-
nario 2). Students are taught about classic two-level branch pre-
dictors prior to the exam, including how the F-stage can use early
branch prediction hardware to predict both the branch target and
the branch direction, while the D-stage branch predictors correct
and update the F-stage predictors afterwards.

Scenario 1 in Figure 7(a) shows how the branch is predicted
not taken, resulting in a misprediction and three fetches to the
store-word, opA, and opB instructions. These instructions partially
execute before being squashed. The branch (i.e., branch-not-equal,
bne) resolves in X1-stage. In Scenario 1, students use their en-
ergymaps to quantify the energy lost to squashed andwasted
work. Note that the F-stage and D-stage have high energy costs and
that these costs are front-loaded. The energy is already consumed
by the time the squash signal arrives. The total energy lost can be
expressed as: 3 × 𝐸𝐹 + 2 × 𝐸𝐷 + 1 × 𝐸𝑋0.

Scenario 2 in Figure 7(b) shows how the branch predictors in
F-stage and D-stage correctly predict the backwards loop, and there
is no wasted energy from mispredictions and squashed instructions.
However, this comes at a cost. In Scenario 2, students realize that
the energies to access the F-stage and D-stage increase due
to the branch predictors. These letters in the pipeline diagram
become more expensive. At this point, it may not be clear how the
branch predictors affected the total energy. Which effect dominates:
the more expensive F-stage and D-stage? or the energy saved by
avoiding fetching and squashing instructions?

The exam question indicates that students should take a position
of the form: “Scenario 2 with branch predictors increases / decreases
the total energy of this assembly loop”. They then support their
position with quantitative evidence from their pipeline diagrams
(e.g., counting letters) and energy maps (e.g., estimating how much
more energy the branch predictors add to the F-stage and D-stage).
After computing the squashed instruction energy in Figure 7(a),
they can take a firm position on whether the total energy cost of
the predictors will exceed the energy saved. Note that students may
be allowed to draw their own branch prediction hardware which
may have different energy costs, unless this detail is provided.

To clarify the intuition behind this exam question, we note that
sophisticated branch predictors are often added to high-performance
out-of-order cores with deep pipelines, which cannot maintain high
performance without extremely high accuracy in their branch pre-
dictors. There is a tremendous performance and energy cost for
squashing tens or hundreds of in-flight instructions in such cores,
which justifies the cost of the branch prediction logic. However, the
exam question assumes a simple six-stage in-order core, and the
performance and energy lost to squashed instructions may be quite
small. From the perspective of energy alone as asked in this exam
question, the costs of implementing a complex, sophisticated branch
predictor will likely outweigh the energy to fetch and squash a few
instructions. However, a simple branch predictor of low complexity
may still represent a worthwhile tradeoff.

5 Conclusion
Computer architecture students today have little access to well-
developed first-order tools for reasoning about energy. On the
other hand, VLSI students learn about energy but do not connect
these intuitions back up to the architecture level. We have designed
an approach that builds energy modeling directly into pipeline

WCAE ’23, June 17, 2023, Orlando, FL, USA Christopher Torng

diagrams, providing a way to extend energy-driven discussion into
existing course materials which already frequently use pipeline
diagrams to discuss performance. From our course offering, we
notice that students are more consistently trained in how to reason
quantitatively about the performance and energy implications of
hardware design principles and computer architecture concepts.
Given that semiconductors are becoming more important from a
workforce and education perspective, the implications of tying these
vertically integrated themes directly into a lecture can be significant.
We hope that other computer systems lecturers can glean useful
lessons from our work and develop materials to train the next
generation of computer architects to think from first principles
about performance and energy.

References
[1] Synopsys Reference Methodologies. http://solvnet.synopsys.com/rmgen.
[2] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh.

SnaPEA: Predictive Early Activation for Reducing Computation in Deep Con-
volutional Neural Networks. Int’l Symp. on Computer Architecture (ISCA), Jun
2018.

[3] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. L. Sewell, M. S. Altaf,
N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator. ACM SIGARCH
Computer Architecture News, Aug 2011.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level power analysis and optimizations. ACM SIGARCH Computer Architecture
News, May 2000.

[5] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE

Journal of Solid-State Circuits (JSSC), Jan 2017.
[6] M. Dubois, M. Annavaram, and P. Stenström. Parallel computer organization

and design. Cambridge University Press, 2012.
[7] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative ap-

proach, 6th edition. Elsevier, 2018.
[8] M. Horowitz. Computing’s energy problem (and what we can do about it). Int’l

Solid-State Circuits Conf. (ISSCC), 2014.
[9] N. P. Jouppi, D. H. Yoon,M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian, J. Laudon,

S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou, and D. Patter-
son. Ten Lessons From Three Generations Shaped Google’s TPUv4i. Int’l Symp.
on Computer Architecture (ISCA), 2021.

[10] K. Koul, J. Melchert, K. Sreedhar, L. Truong, G. Nyengele, K. Zhang, Q. Liu, J. Setter,
P.-H. Chen, Y. Mei, M. Strange, R. Daly, C. Donovick, A. Carsello, T. Kong, K. Feng,
D. Huff, A. Nayak, R. Setaluri, J. Thomas, N. Bhagdikar, D. Durst, Z. Myers,
N. Tsiskaridze, S. Richardson, R. Bahr, K. Fatahalian, P. Hanrahan, C. Barrett,
M. Horowitz, C. Torng, F. Kjolstad, and P. Raina. AHA: An Agile Approach to
the Design of Coarse-Grained Reconfigurable Accelerators and Compilers. IEEE
Trans. on Embedded Computing Systems (TECS), Jan 2023.

[11] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
McPAT: An integrated power, area, and timing modeling framework for multicore
and manycore architectures. Int’l Symp. on Microarchitecture (MICRO), Dec 2009.

[12] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A tool to
model large caches. Int’l Symp. on Microarchitecture (MICRO), Dec 2007.

[13] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space exploration of
customized architectures. Int’l Symp. on Computer Architecture (ISCA), Jun 2014.

[14] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten. Ultra-Elastic CGRAs for Irregular
Loop Specialization. Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb 2021.

[15] C. Torng, M. Wang, and C. Batten. Asymmetry-Aware Work-Stealing Runtimes.
Int’l Symp. on Computer Architecture (ISCA), Jun 2016.

[16] Y. N.Wu, J. S. Emer, and V. Sze. Accelergy: An architecture-level energy estimation
methodology for accelerator designs. Int’l Conf. on Computer-Aided Design
(ICCAD), Nov 2019.

http://solvnet.synopsys.com/rmgen

	Abstract
	1 Introduction
	2 Background and Goals
	2.1 Research-Grade Energy Modeling Tools
	2.2 Course Textbooks
	2.3 Design Experiences in the Classroom
	2.4 Industry-Grade Energy Modeling Tools

	3 Classroom Mechanisms for Energy
	3.1 Building Intuition about Energy
	3.2 Energy Maps
	3.3 Evaluation with Power-Performance Plots
	3.4 Grading Approach

	4 Practice Exam Question
	5 Conclusion
	References

