

A 3.25 GHz Large-Integer Extended GCD Accelerator in 12 nm

<u>Kavya Sreedhar</u>¹, Gedeon Nyengele¹, Mark Horowitz¹, Christopher Torng²

¹Stanford University, USA ²University of Southern California, USA

skavya@stanford.edu

Many cryptography algorithms rely on fast extended GCD (XGCD)
 Recent applications are dominated by large-integer XGCD

 \Box XGCD computes Bézout coefficients b_a , b_b satisfying Bézout's Identity

$$b_a, b_b : b_a * a_0 + b_b * b_0 = gcd(a_0, b_0)$$

- □ We present the first chip for XGCD
 - Building from our carry-save-adder subtraction-based algorithm (CHES'22)

Reducing inputs to find the GCD

- □ Algorithms use GCD-preserving transformations to find the GCD
- \Box Iterations end when one of a_i, b_i is zero and the other is the GCD
- \Box Every cycle, either a_i or b_i is updated
 - When a_i or b_i is even, shift by one, two, or three
 - When a_i and b_i are odd, compute $(a_i + b_i)/4$ or $(a_i b_i)/4$

XGCD: $b_a * a_0 + b_b * b_0 = gcd(a_0, b_0)$

- \Box Need to maintain two equations since either a_i or b_i will become zero
 - $u_i * a_0 + m_i * b_0 = a_i$
 - $y_i * a_0 + n_i * b_0 = b_i$
- \Box Every cycle, either a_i, u_i, m_i or b_i, y_i, n_i is updated
- *u_i*, *m_i*, *y_i*, *n_i* are updated each cycle in a way that ensures these equations hold
 Divisibility of these variables may not match the divisibility of *a_i*, *b_i*

XGCD:
$$b_a * a_0 + b_b * b_0 = gcd(a_0, b_0)$$

- \Box At the end: one of a_i, b_i is zero and the other is the GCD
- $\Box \quad \mathsf{GCD:} \ \mathsf{gcd}(a_0, b_0) = a_i + b_i$
- □ Bézout coefficients: $b_a = u_f + y_f$; $b_b = m_f + n_f$

- Precomputes constant multiples of a₀, b₀
- Given four clock cycles to complete

а

b

.

Reduction a_f, b_f a_{i+1} update a_i $\rightarrow a_i \rightarrow$ u_f, y_f $a_0, \dots, 7a_0$ m_f, n_f Pre b_{i+1} $b_0, \dots, 7b_0$ processing update b_i CLK u_{i+1} $u_i \rightarrow update u_i$ Precomputes constant CLK multiples of a_0, b_0 Given four clock update y_i cycles to complete CLK m_{i+1} update m_i Iteratively reduces variables $\rightarrow n_i \rightarrow$ update n_i Requires hundreds of iterations CLK

 $\begin{array}{c|c} a \\ \hline b \\ \hline b \\ \hline processing \end{array} \begin{array}{c} a_0, \dots, 7a_0 \\ b_0, \dots, 7b_0 \end{array}$

- Precomputes constant multiples of a_0, b_0
- Given four clock cycles to complete

- Computes final XGCD results
- Given four clock cycles to complete

Iteratively reduces variables Requires hundreds of iterations

- □ There are 23 possible updates for each of the 4 Bézout variables
- □ Most complicated Bézout update to maintain Bézout equations

 $(u_i \pm y_i \pm k b_0) \gg 2$

- □ There are 23 possible updates for each of the 4 Bézout variables
- □ Most complicated Bézout update to maintain Bézout equations

$$(u_i \pm y_i \pm kb_0) \gg 2$$

 $1 \quad 1 \quad 1$
CS form constant

- □ To accelerate this algorithm, we
 - Compute intermediates in carry-save (CS) form: no carry-propagation
 - Use late selects and precompute control signals to hide control delay

Critical path

- 1. Cannot quickly compare large-integer values in CS form
- 2. Driving control signals is expensive
- 3. Shifting in CS form requires care

1. Cannot quickly compare large-integer values in CS form

- 2. Driving control signals is expensive
- 3. Shifting in CS form requires care

 \Box When a_i, b_i are odd, want to compare $a_i > b_i$

- \Box When a_i, b_i are odd, want to compare $a_i > b_i$
- \Box We track the approximate size of a_i, b_i
- **Compute** $\delta \approx \log_2 a_i \log_2 b_i$, building from prior work
- \Box sign(δ) approximates sign($a_i b_i$)

- \Box When a_i or b_i is even, divide by a power of two up until eight
 - δ is correctly updated by the number of bits reduced

- \Box When a_i or b_i is even, divide by a power of two up until eight
 - δ is correctly updated by the number of bits reduced
- □ When a_i and b_i are odd, compute $(a_i + b_i)/4$ or $(a_i b_i)/4$
 - δ is conservatively updated by one
 - However, there can be more cancellation: > 1 bit could have been reduced
- □ As a result, $sign(\delta) \neq sign(a_i b_i)$ 25% of the time

- □ Wrong variable can be updated, but algorithm still works
- □ Average cycle count increases by 15%
- Critical path delay is 4X shorter compared to using a slow full comparison
- **G** For 512-bit inputs, updating δ requires a 10-bit carry-propagation adder

- 1. Cannot quickly compare large-integer values in CS form
- **2.** Driving control signals is expensive
- 3. Shifting in CS form requires care

Using late selects

Using late selects

Precomputing control

Precomputing control

Precomputing control

- □ We observe that in the XGCD algorithm
 - Different variables must have the same divisibility
 - Some sum variable updates are the same
 - Some difference variable updates only differ by a sign

 $(1.0 = \text{area of baseline design with CSAs and } \delta)$

- 1. Cannot quickly compare large-integer values in CS form
- 2. Driving control signals is expensive
- **3.** Shifting in CS form requires care

□ The problem

- Our hardware has negative numbers \rightarrow must preserve sign when shifting
- Shifted result can be off by one when both *carry* and *sum* are odd

□ The problem

- Our hardware has negative numbers \rightarrow must preserve sign when shifting
- Shifted result can be off by one when both *carry* and *sum* are odd

The solution

- Build from prior work to specialize logic to minimize delay of signed logic shifting
- Use a half adder to insert shifted out carry
 - $\hfill\square$ Make detecting when to apply this correction cheap

Execution modes:

- Fast
- Constant time
- Debugging

Execution modes:

- Fast
- Constant time
- Debugging

	512-bit XGCD	255-bit XGCD
Technology	GF 12nm FinFET	
Voltage	0.9V	
Input Bitwidth	512	255
Max Clock Frequency (GHz)	3.25	3.25

Design performance is independent of bitwidth with CSAs

Execution modes:

- Fast
- Constant time
- Debugging

	512-bit XGCD	255-bit XGCD
Technology	GF 12nm FinFET	
Voltage	0.9V	
Input Bitwidth	512	255
Max Clock Frequency (GHz)	3.25	3.25
Total Area (mm ²)	0.25	0.076

The 255-bit XGCD unit was optimized for constant-time applications

Execution modes:

- Fast
- Constant time
- Debugging

	512-bit XGCD	255-bit XGCD
Technology	GF 12nm FinFET	
Voltage	0.9V	
Input Bitwidth	512	255
Max Clock Frequency (GHz)	3.25	3.25
Total Area (mm ²)	0.25	0.076
Average Execution Time (ns)		119
Constant-time Execution Time (ns)		119

Execution modes:

- Fast
- Constant time
- Debugging

	512-bit XGCD	255-bit XGCD
Technology	GF 12nm FinFET	
Voltage	0.9V	
Input Bitwidth	512	255
Max Clock Frequency (GHz)	3.25	3.25
Total Area (mm ²)	0.25	0.076
Average Execution Time (ns)	176	119
Constant-time Execution Time (ns)	239	119

- Can easily scale performance of our design to the bitwidth in prior work
 All non-constant-time prior work used division algorithms
- □ 18X faster than prior 1024-bit HW simulations (APCCAS'20, ISCAS'21)
- □ 19X faster than a chip with a 4096-bit mod inv unit (ISSCC'23)
- □ Area comparisons with bitwidth and technology scaling
 - 8.5X to 14X smaller than APCCAS'20
 - 2X to 3.4X smaller than ISCAS'21

Constant-time XGCD

- □ JSSC'19, FPL'21 use division algos
- □ 255-bit constant-time XGCD speedups
 - 303X faster than JSSC'19
 - 344X faster than FPL'21
 - 23X faster than ePrint'20
- Our fast average execution is 1.4X
 faster than our constant-time XGCD

Key contributions

- We present the first ASIC for XGCD, with a constant-time config
 Validates the advantage of subtraction-based XGCD algorithms in HW
- □ We address challenges with implementing CSAs in practice
 - Avoid large-integer comparisons for control
 - Use late selects and precompute control to minimize control delay
 - Contribute efficient circuitry for shifting in CS form
- Our chip is 23X faster than SW, 18X faster than HW sims, and 303X faster than prior chips for modular inversion

43

