
A 3.25 GHz Large-Integer Extended GCD
Accelerator in 12 nm

Kavya Sreedhar
Stanford University

Stanford, USA
skavya@stanford.edu

Gedeon Nyengele
Stanford University

Stanford, USA
nyengele@stanford.edu

Mark Horowitz
Stanford University

Stanford, USA
horowitz@ee.stanford.edu

Christopher Torng
University of Southern California

Los Angeles, USA
ctorng@usc.edu

Abstract—Large-integer extended GCD (XGCD) is a critical
operation in cryptography applications such as new blockchains
and modular inversion. We present the first ASIC for XGCD,
which is 23× faster than state-of-the-art software, 18× faster
than prior hardware simulations, and up to 303× faster than
prior chips for modular inversion. These performance gains come
from careful circuit and logic optimizations to avoid long carry
propagation and to hide control signal delays. Our chip computes
XGCD with 255-bit integer inputs in 87 ns and XGCD with
512-bit integer inputs in 176 ns on average. Our chip can be
configured for constant-time execution and computes constant-
time 255-bit XGCD in 119 ns and constant-time 512-bit XGCD
in 239 ns.

Index Terms—extended GCD, modular inversion, constant
time, carry save

I. INTRODUCTION

The extended greatest common divisor (XGCD) computa-
tion finds Bézout coefficients u,m such that u ∗ a+m ∗ b =
GCD(a, b). XGCD has many applications in cryptography,
including modular inversion [1], RSA [2], elliptic curve cryp-
tography [3], blockchains [4], and ElGamal encryption [5]. In
new blockchain protocols and newer efficient approaches for
constant-time modular inversion, XGCD requires over 90% of
the computation time [6]. As a result, recent papers have begun
exploring fast hardware designs for large-integer XGCD [6]–
[9], but there are no fabricated chips yet in the literature.

This paper demonstrates the performance advantage of
our carry-save-adder (CSA) subtraction-based XGCD algo-
rithm [6] and presents the first fabricated ASIC for XGCD.
Using a CSA-based approach results in a fast cycle time,
which is independent of input bitwidth: our chip, built in
GlobalFoundries 12 nm FinFET technology, runs at 3.25 GHz
for 255-bit and 512-bit inputs when driven with a 0.9 V power
supply. Using a pure CSA-based approach presents several
challenges: we cannot quickly compare values in carry-save
(CS) form, the time needed to drive our control signals across
very wide, 255 to 512-bit datapaths is a large fraction of our
cycle time, and shifting CS values requires care to preserve
data values. This paper extends our prior work [6] to overcome
these challenges, by optimizing large-integer approximations
for the control flow, performing area-performance tradeoffs

This work was supported by the DSSoC DARPA program and the Stanford
AHA Agile Hardware Center and Affiliates Program. Kavya Sreedhar was
supported by a graduate fellowship award as a Knight-Hennessy Scholar at
Stanford University.

Fig. 1. Overview of dataflow in our XGCD accelerator, with variables
described in Section II. Logic inside the “update ui” unit is shown in Figure 3.

with control logic optimizations, and providing circuitry for
accurately and efficiently shifting in CS form. With these
optimizations, our chip is 23× faster than state-of-the-art
software, 18× faster than prior hardware simulations, and up
to 303× faster than prior chips for modular inversion.

II. DATAFLOW BACKGROUND

The full XGCD algorithm is described in [6] and consists
of three stages: a pre-processing stage, a reduction stage, and
a post-processing stage (Figure 1). The pre-processing stage
requires carry-propagation adders (CPAs) to convert the inputs
(a, b) into odd inputs to the reduction stage (a0, b0) such
that GCD(a, b) = GCD(a0, b0), and to precompute constant
multiples of a0 and b0, up to 7×, in order to accelerate the
reduction stage. The pre-processing stage is thus given four
clock cycles to complete the CPA calculations.

The reduction stage reduces a0, b0 to find GCD(a0, b0):
in every iteration i, the algorithm applies a GCD-preserving
transformation to reduce ai or bi. When ai or bi is even, it
is divided by a power of two to generate an odd result. The
largest reduction is by eight, which is allowed to leave an even
result. When ai and bi are odd, either their sum or difference
will be divisible by four, and this value is computed and
divided by four. The reduction stage is guaranteed to reduce
the magnitude of one operand by at least 2×, with many steps
decreasing it by 4× or 8×. The iteration ends when either ai
or bi is zero, yielding the other as the GCD.

Every cycle, the reduction stage also updates the Bézout
coefficients to compute the XGCD. Since we do not know
whether ai or bi will become zero, we maintain two equations:



Fig. 2. High-level control and updates for ai, bi, and δ each cycle.

ui ∗ a0 +mi ∗ b0 = ai and yi ∗ a0 + ni ∗ b0 = bi. Only one
set of these variables is updated each cycle: ui,mi when ai is
reduced and yi, ni when bi is reduced. All variables are stored
in CS form during the reduction stage.

At the end, we compute (ui + yi,mi + ni) as the Bézout
coefficients, and ai + bi as the GCD (since ai or bi will be
zero and the other will be the GCD). We add these values
since adding in CS form is much faster than a full-width zero
detection to find which of ai or bi is zero, followed by a
selection. The post-processing stage has a large CSA tree to
compute these sums before the CPA and is also given four
clock cycles to complete.

III. LARGE-INTEGER APPROXIMATIONS

When ai, bi are odd, we want to update the larger of ai, bi
so that their difference remains positive, keeping ai+1, bi+1

positive. This choice ensures the fastest convergence. Since
fast magnitude comparison is not possible in CS form, we
instead compute δ ≈ log2(ai) − log2(bi) so sign(δ) can
approximate sign(ai − bi) [10]. We update δ each cycle by
conservatively updating the bit length difference between ai
and bi by the minimum number of bits reduced that cycle,
which is an approximation of the true value of δ. Figure 2
shows the possible ai, bi conditions, along with how ai, bi, δ
are updated in these conditions and in which conditions the δ
approximation may not be accurate.

We find that 25% of the time, sign(δ) ̸= sign(ai−bi). These
values can differ when ai and bi are odd and there is more
cancellation than the minimum guaranteed cancellation. In
those cases, the “incorrect” variable is updated. The algorithm
is still functional since we applied a valid GCD-preserving
transformation, but ai, bi can become negative, the outputs
can have the wrong sign, and the algorithm can take longer to
converge. Since our hardware handles negative numbers, the
algorithm will still converge: δ will eventually switch sign to
update the larger variable. We find that using δ rather than
a slow full comparison increases the average cycle count by
less than 15% across 128-bit to 2048-bit inputs, while reducing
the critical path delay by 4×. For 512-bit inputs, updating δ
every cycle requires a 10-bit carry-propagation adder, which
fits within our cycle time.

Fig. 3. Dataflow overview for “update ui” and arrival times on the critical
path. Each dashed-outline box represents a different complexity update (there
are 5 types) and indicates the number of update options of that type. “CS >>
2” and “CS >> s” indicate shifts in CS form, which are more complicated
than normal shifts; the logic for “CS >> 2” is shown in Figure 6.

Fig. 4. Arrival times with late selects and separate computation for the LSBs
for the 255-bit XGCD unit. Only the critical data path, which is of “Type 1”
from Figure 3, is shown; the other data paths from Figure 3 are shown in
thin green boxes. The clock arrival time is labeled such that the clock on the
critical path arrives 5 ps late, where 5 ps is the setup time of the flop, making
the 298 ps at the end of the data path (in purple) the cycle time. The resulting
control path (in blue) traverses the LSB datapath and then goes through a
17:1 mux to be registered before driving the control for the next cycle.

IV. CONTROL OPTIMIZATIONS

Since the next operation depends on the divisibility of the
current results, the control delay can greatly increase cycle
time: just buffering and driving these signals to the 512-bit
datapaths takes ∼150 ps, which is roughly half of our final
cycle time. We decrease this overhead by 77% by computing
all possible updates in parallel and using late selects. This
increases the overall area by 1.76×. If we selected early, we



Fig. 5. Area, time, and time-area product with control logic optimizations;
delay is measured relative to the datapath-limited delay.

could remove the blue blocks in Figure 1 and use “update
ai” to compute the update for ai or bi, “update ui” for ui

or yi, and “update mi” for mi or ni since either ai, ui,mi or
bi, yi, ni are updated each cycle. Using late selects also results
in up to 23 separate update options for every XGCD variable,
as shown in Figure 3. The design selects between the most
critical updates with 4:1 multiplexers, which then feed into
a 17:1 multiplexer optimized to minimize the 4:1 multiplexer
path delay.

While the late selects improve timing, the control path is still
critical. To hide this delay, we separate out the computation
for the three least significant bits (2:0) since the control signals
only depend on these bits, as shown in Figure 4. For this small
amount of logic, we use more ultra-low threshold voltage and
larger standard cells, which improves performance. This allows
us to push the small logic to compute the control signals from
the data values from the start of the next cycle to the end of
the current cycle. We need to push this logic through the 17:1
multiplexer, so it is duplicated 17 times. This optimization
fully hides the control path delays, marginally increases area
by 0.6%, and improves timing by an additional 10%.

Finally, we realize that some different variables must have
the same divisibility in this algorithm, and that some variable
updates differ by only a sign. Since our hardware supports
negative logic, we compute these values in only one variable
update unit. Specifically, we remove the 4:1 multiplexer con-
trol generation in Figure 4, the purple dashed-outline boxes in
Figure 3, and logic for the updates in the blue boxes in Figure 2
from many units. This optimization reduces the area overhead
of late selects by 77% and improves timing by another 10%.

Figure 5 shows the progressive improvements of our opti-
mizations. Compared to only using CSAs and δ, our optimiza-
tions together reduce time by 1.6× and time-area product by
1.4×. The final datapath delay is 90% of the original datapath
delay, since our datapath block sharing results in lower fanout
and routing delays to reduce the overall datapath delay.

V. SHIFTING IN CARRY-SAVE FORM

Shifting values in CS form requires attention at both the
most significant bits (MSBs) and the least significant bits

Fig. 6. Circuitry for efficiently shifting right by two in CS form (“CS >>
2” in Figure 3), which requires attention at the MSBs and at the LSBs.

(LSBs). Since variables can become negative in our implemen-
tation, we must preserve sign when shifting in CS form. We
build upon Tenca’s work [11] and create relatively balanced
equations for computing shifted numbers in this form. We also
specialize the logic for shifting by higher powers of two to
make its delay comparable to the delay for shifting by one.
Our logic for shifting by two is shown in Figure 6.

If the carry and sum representing a number are odd and
then shifted to the right, the carry that would have been
generated by adding the LSBs would have been shifted out
and lost, resulting in an answer that is off by one. Consider
an example with carry = 3 and sum = 3 representing a value
of six. The shifted carry and shifted sum would both be one,
which represents a value of two (instead of three, which is six
divided by two). Note that we cannot simply set the lower bit
of carry or sum to be one after shifting, since the LSB for
the carry and the sum can already be one after a shift, as in
the above example. To correct the shifted result, we pass the
LSBs through a half-adder to generate an empty slot at the
LSB to place the carry from the dropped bits if it occurs.

We can make detecting when to apply this correction cheap:
an AND gate delay in the shift-by-one case and an OR gate
delay in the shift-by-two and shift-by-three cases. For the shift-
by-one case, an AND gate checks whether the two lowest bits
of carry and sum are set. For the shift-by-two case (Figure 6),
we take advantage of the fact that we already know that, if we
use this result, the value mod 4 = 0, since we only shift by two
when the number is divisible by four. This constraint means
that the two lowest bits of carry and sum have to be one of
(00, 00), (01, 11), (11, 01), (10, 10). All but the (00, 00) case
have a generated carry that would be shifted out. Thus, we
can simply use an OR gate for the second lowest bits to detect
when to apply this correction. If the OR gate output is one but
we are not in one of these four cases, then we do not use the
calculated result, so the result does not matter. Similarly, in the
shift-by-three case, we detect when there is a dropped carry
with an OR gate for only the third lowest bits. Our logic for
shifting in CS form adds minimal overhead: Figure 3 shows
that “CS >> 2” requires 29 ps on the critical path.

VI. RESULTS

The test chip is fabricated in GlobalFoundries 12 nm Fin-
FET technology. Our test chip was integrated on a larger SoC,



Fig. 7. Die photo and comparison with prior work.

so Figure 7 shows only the top of the die, which contains our
circuitry. We use the ARM Cortex M3 CPU from that SoC
as our control processor to configure the chip and read out
results. We implemented an on-chip adjustable clock generator
to facilitate testing at high frequencies.

When the constant-time configuration is set, the XGCD
units always run for the worst-case number of cycles for the
input bitwidth. This enables constant-time execution regardless
of the input values. We also have a debugging configuration
mode, which allows the user to specify the number of cycles to
run for before stopping, in order to enable debugging at these
high GHz frequencies. After stopping execution, the unit logs
all variables in CS form and all control signals. This control
system runs at one-fourth the core clock frequency, enabling
us to stop and inspect the computation every four cycles.

Our chip consists of an XGCD unit with 255-bit inputs
and one with 512-bit inputs. We optimized the 255-bit unit
for modular inversion, which often requires constant-time
performance to protect against timing side-channel attacks [1],
[6]. Unlike the 512-bit unit, the 255-bit unit does not reduce
ai, bi by 4× or 8× when they are even, which eliminates many
corresponding ui,mi, yi, ni update options. This makes the
255-bit unit 3.3× smaller in area, and results in 1.3× slower
average performance but the same constant-time performance.
Figure 7 shows that at 0.9 V, the chip computes 255-bit XGCD
in 119 ns (255-bit unit) and 87 ns (512-bit unit), and 512-
bit XGCD in 176 ns, when averaging execution times across
random inputs. Constant-time XGCD requires 119 ns (255-bit
unit) and 239 ns (512-bit unit). The 255-bit and 512-bit units
occupy 0.076 mm2 and 0.25 mm2, respectively, and consume
an average of 220 mW and 565 mW.

The bitwidth independence of our design allows us to
scale our performance to the bitwidth of prior work shown

in Figure 7 for comparison. For non-constant-time XGCD,
our design is ∼18× faster than prior 1024-bit hardware
simulations [7], [8] and 19× faster than a recent chip with
a 4096-bit modular inversion unit [12]. Our chip is 8.5×
to 14× smaller than [7] and 2× to 3.4× smaller than [8],
after bitwidth and technology scaling. For constant-time 255-
bit XGCD, our chip is 23× faster than the state-of-the-art
software [13], 344× faster than prior FPGA work [9], and
303× faster than a prior chip with a 256-bit modular inversion
unit [14]. Our speedup over division-based algorithms [7]–
[9], [14] demonstrates the advantage of our subtraction-based
XGCD algorithm for hardware, and shows that we can realize
3+ GHz XGCD core frequencies in silicon. Our chip is faster
than prior subtraction-based algorithms [12], [13] due to our
lower cycle counts and our control logic optimizations.

VII. CONCLUSION

In this paper, we present the first ASIC for the XGCD
computation, which also directly computes modular inverses.
By removing the need to compare carry-save values and over-
lapping control and data delays, our chip runs at 3.25 GHz at
0.9 V for 255-bit and 512-bit inputs, validating the advantage
of our carry-save-adder subtraction-based XGCD algorithm.
Our chip greatly improves XGCD performance for recent
cryptographic applications, achieving a 23× speedup over
software, 18× speedup over hardware simulations, and up to
303× speedup over prior chips for modular inversion.

VIII. ACKNOWLEDGEMENTS

We thank Alex Carsello, Kalhan Koul, Yuchen Mei, and
Priyanka Raina for help with physical design, test board
design, chip bringup infrastructure, and paper draft feedback.

REFERENCES

[1] D. J. Bernstein and B.-Y. Yang, “Fast constant-time gcd computation
and modular inversion,” CHES, 2019.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM, 1978.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., 1987.
[4] B. Wesolowski, “Efficient verifiable delay functions,” Eurocrypt, 2019.
[5] T. ElGamal, “A public key cryptosystem and a signature scheme based

on discrete logarithms,” IEEE Trans. Inf. Theory, 1985.
[6] K. Sreedhar, M. Horowitz, and C. Torng, “A fast large-integer extended

gcd algorithm and hardware design for verifiable delay functions and
modular inversion,” CHES, 2022.

[7] D. Zhu, Y. Song, J. Tian, Z. Wang, and H. Yu, “An efficient accelerator
of the squaring for the verifiable delay function over a class group,”
APCCAS, 2020.

[8] D. Zhu, J. Tian, and Z. Wang, “Low-latency architecture for the parallel
extended gcd algorithm of large numbers,” ISCAS, 2021.

[9] S. Deshpande, S. M. del Pozo, V. Mateu, M. Manzano, N. Aaraj, and
J. Szefer, “Modular inverse for integers using fast constant time gcd
algorithm and its applications,” FPL, 2021.

[10] R. P. Brent and H. T. Kung, “A systolic algorithm for integer gcd
computation,” ARITH, 1985.

[11] A. Tenca, S. Park, and L. Tawalbeh, “Carry-save representation is shift-
unsafe: the problem and its solution,” IEEE Trans. Comput., 2006.

[12] G. Shi, Z. Tan, D. Cao, J. Cai, W. Zhang, Y. Wu, and K. Ma, “A 28nm
68mops 0.18 uj/op paillier homomorphic encryption processor with bit-
serial sparse ciphertext computing,” ISSCC, 2023.

[13] T. Pornin, “Optimized binary gcd for modular inversion,” ePrint, 2020.
[14] U. Banerjee, A. Wright, C. Juvekar, M. Waller, and A. P. Chandrakasan,

“An energy-efficient reconfigurable dtls cryptographic engine for secur-
ing internet-of-things applications,” JSSC, 2019.


