
Creating an Agile Hardware Design Flow
Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly,
Caleb Donovick, David Durst, Kayvon Fatahalian, Kathleen Feng,

Pat Hanrahan, Teguh Hofstee, Mark Horowitz, Dillon Huff, Fredrik
Kjolstad, Taeyoung Kong, Qiaoyi Liu, Makai Mann, Jackson
Melchert, Ankita Nayak, Aina Niemetz, Gedeon Nyengele,

Priyanka Raina, Stephen Richardson, Raj Setaluri, Jeff Setter, Kavya
Sreedhar, Maxwell Strange, James Thomas, Christopher Torng,

Leonard Truong, Nestan Tsiskaridze, Keyi Zhang

Stanford AHA! Agile Hardware Center

About Me

Priyanka Raina
Assistant Professor of Electrical Engineering
Stanford University

Ph.D. in EECS, MIT (2018), S.M. in EECS, MIT (2013)
and B.Tech. in EE, IIT Delhi (2011)

I am one of the faculty leads in Stanford’s AHA!
Agile Hardware Center and work on domain-specific
hardware architectures and design methodology

https://aha.stanford.edu/

Motivation

• Digital design tools and methodology have improved dramatically
letting us create large SoCs with accelerators

• But completing these designs (with software)
• Takes years
• Costs hundreds of millions of dollars

Dozens of specialized accelerators
Machine Learning
Computational Photography
Video Coding
Cryptography
Depth Processing

https://www.anandtech.
com/show/14892/the-
apple-iphone-11-pro-
and-max-review/2

Apple’s A13 SoC
8.5 billion transistors

7 nm

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

Waterfall Approach to Accelerator Design

• A waterfall approach is still used for most accelerator designs

• Fails when
• Changing application requirements
• Incomplete knowledge/understanding of the problem

Application
Analysis

ResNet
MobileNet

…

Architectural
Specification

RTL Design
and Test

Physical
Design

Software /
Compiler

Design

Agile Approach to Accelerator Design
• We explore an agile hardware/software design flow
• Incrementally update the hardware accelerator and software to map to it

Base Hardware
Accelerator v0

Compiler
Toolchain v0

Application 1
Application 2

Power,
Performance,

Area

Base Hardware
Accelerator v1

Compiler
Toolchain v1

Incremental
Updates

Application 2.1
Application 3

Agile Approach to Accelerator Design
1. Accelerator must be

configurable
• So we can map new or

modified applications to it
(although with lower
efficiency)

2. Hardware and compiler
must evolve together
• Any change in hardware

must propagate to compiler
automatically

Base Hardware
Accelerator v0

Compiler
Toolchain v0

Application 1
Application 2

Power,
Performance,

Area

Base Hardware
Accelerator v1

Compiler
Toolchain v1

Incremental
Updates

SoC with a Coarse-Grained Reconfigurable Array
• Our accelerator is an

island-style CGRA
• Processing element

(PE) tiles – potentially
heterogeneous
• Memory (MEM) tiles
• Statically configured

interconnect

• Programmable, but
allows exploiting
parallelism and
locality

PE MEM PE MEM

PE MEM PE MEM

PE MEM PE MEM

PE MEM PE MEM

Sy
st

em
 In

te
rc

on
ne

ct

Gl
ob

al
 B

uf
fe

r

CPU

Instruction
Cache

Data
Cache

DMA
Engines

CGRA

Software Compiler

Application Halide Program

Halide Program for a
3x3 Convolution
Algorithm:
RDom r(0, 3, 0, 3);
output(x, y) += input(x + r.x, y + r.y)

* weight(r.x, r.y)

Schedule:
input.in().store_at(output, y)

.compute_at(output, x);
output.accelerate({input}, y);
output.unroll(r.x).unroll(r.y);

Memory
hierarchy

Scope of
accelerator

Which
loops to

parallelize

Loop tiling,
ordering,

fusion

output

input

F

Software Compiler

Lower

Application Halide Program

CoreIR Graph

Un
if
ie
d
Bu

ff
er

output

Mul

Mul

Mul

Add
Add

Addinput

CoreIR Dataflow Graph

.

.

.

.

.

.

...

.
.

.

CPU Code

Software Compiler

Lower

CPU CodeApplication Halide Program

CoreIR Graph

Map PE and
Memory

Mapped CoreIR Graph

CGRA
Place & Route

CGRA Bitstream

MEM

output

PE

PE

PE

PE
PE

PE

Mapped CoreIR Graph

.

.

.

.
.

.

Mapped Kernel

SRSR

SRSR

SRSR

MEM
Shift

Registers

Mapped Memory

input

Software compiler must evolve with hardware!

Lower

Application Halide Program

CoreIR Graph

Map PE and
Memory

Mapped CoreIR Graph

CGRA
Place & Route

CGRA Bitstream

Depends on the PE and Memory hardware

Depends on the interconnect hardware

Hardware independent

Our Key Contribution

• Traditionally, designers create parameterized hardware generators
that communicate with the software compiler through configuration
files

• We create mini languages whose semantics are sufficiently expressive
to communicate both configuration values and how changes to those
values impact other layers in the system

• Our system has three mini-languages or domain-specific languages
(DSLs)
• PEak for PEs, Lake for memories, Canal for interconnect

Our DSL-based Hardware Generation and
Software Compilation Flow

PEak Compiler

PE HW
in Magma

CGRA Verilog

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

Rewrite
Rules

Our DSL-based Hardware Generation and
Software Compilation Flow

Lake CompilerPEak Compiler

PE HW
in Magma

CGRA Verilog

Lake Program
(MEM spec)

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

MEM HW
in Magma

Rewrite
Rules

Our DSL-based Hardware Generation and
Software Compilation Flow

Lake Compiler Canal CompilerPEak Compiler

PE HW
in Magma

CGRA Verilog

Routing
Graph

Canal Program
(Interconnect spec)

Lake Program
(MEM spec)

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

MEM HW
in Magma

Interconnect HW
in Magma

PEak: PE DSL
PE Functional Specification
class PE(Peak):

def __init__(self):
self.o_reg = Register(Data)
self.f_reg = Register(Bit)

def __call__(self, inst: Instruction, A: Data,
B: Data, C: Data, c_in: Bit)->(Data, Bit):
if inst.invert_A:

A = ~A
if inst.scale_B:

B = B*C
if inst.op == Opcode.Add:

res, flag = A.adc(B, c_in)
else: # inst.op == Opcode.And

res = A & B
flag = (res == 0)

if inst.reg_out:
res = self.o_reg(res)
flag = self.f_reg(flag)

return res, flag

PE ISA Specification
class Opcode(Enum):

Add = 0
And = 1

class Instruction(Product):
op = Opcode
invert_A = Bit
scale_B = Bit
reg_out = Bit

Data is a BitVector
Data = Unsigned[16]

Specific types (or
composition of types) for
operands and instructions

Define sub-
components
and state

Define
desired
behavior of
each
instruction

PEak Specification
PE Python Execution
pe = PE()

inst = Instruction(
Opcode.Add,
Bit(0), # invert_A
Bit(1), # scale_B
Bit(0)) # reg_out

out, flag = pe(
inst,
Data(2), # A
Data(3), # B
Data(5), # C
Bit(0)) # c_in

assert out == Data(17)
assert flag == Bit(0)

PEak Compiler

PEak
Specification

Functional
Model

Serves as

Hardware
RTL Verilog

Generates
Using magma

Rewrite Rules
for Mapper

Generates
Using SMT

Tests

Single Source of Truth

Multiple Interpretations of PEak Specification

• PEak program uses
abstract types provided by
the PEak DSL such as Bit,
BitVector etc.
• Each component of the

PEak compiler provides a
separate concrete
implementation of these
abstract types
• Multiple interpretations of

a PEak specification in
different contexts

Python
Context

Functional
Model

PEak
Program

BitVector

Magma
Context

PEak
Program

RTL

Bits

SMT
Context

PEak
Program

Symbolic
Representation

(for Rewrite
Rules)

SMTBitVector

PE Rewrite Rule Generation from Symbolic
Representation

CoreIR.Sub

In0 In1

Out

PE

res flag

c_in A B C

∃inst ∀inputs : CoreIR.Op(inputs) == PE(inst,inputs)

Instruction (
op = Add,
invert_A = True,
…

)

1

Rewrite Rule

Lake: Memory DSL

• Lake memory modules contain
• One or more memory units
• Blocks that select or combine inputs to create an output
• Graph interconnecting these units to each other and the ports

Storage
Buffer
(SRAM)

Addr
Gen

Aggregation
Buffer: Serial In

- Parallel Out

Addr
Gen

Addr
Gen

Addr
Gen

Transpose
Buffer: Parallel In

- Serial Out

Addr
Gen

Addr
Gen

ch
ai

n_
in

Lake: Memory DSL

Lake
Specification

Hardware RTL
Verilog

High-level specification for a polyhedral rewrite
system that uses hardware parameters to optimize

unified buffers in the application

Hardware
Configuration

Using an
SMT solver

High-Level Specification for Polyhedral
Rewrite System
• For each memory unit, the rewrite system needs to know the
• Memory capacity
• Number of ports
• Port width
• Read/write delay
• Capability of the address generators

! Like nested affine loops (number of loops and constraints on the loop values)

• All extracted from the hardware specification

Polyhedral Rewrite System

!"# Reuse analysis
$%&'(%)*+%+,-.*

/"0&12&345*("6"(23.

!/# Banking
70(-%")%)
/"0&12&34

!(#* Chaining
70(-%")%)
("6"(23.

!&#*Vectorization
8"3(4%)*203%-9"(%

12&34

Hardware Independent

!"# Reuse analysis
$%&'(%)*+%+,-.*

/"0&12&345*("6"(23.

!/# Banking
70(-%")%)
/"0&12&34

!(#* Chaining
70(-%")%)
("6"(23.

!&#*Vectorization
8"3(4%)*203%-9"(%

12&34

Hardware Dependent

• Canal takes a set of (heterogeneous) PE and memory cores and a directed
graph-based specification of the interconnect, and generates the
hardware, the routing graph and the configuration bitstream

Canal Interconnect DSL

Configuration Bitstream

Routing Graph for P&R

Hardware RTL Verilog

PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con��guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

Canal Specification

PE/MEM Core
Designer

Interconnect
Designer

Generates

Generates

Generates
PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con��guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

Garnet SoC

• 32×16 array of PE and
memory tiles

! Each PE tile has a 16-bit, two-
input, fixed point ALU, and
some registers

! Each memory tile contains 2
KB of SRAM and flexible
address generators

• An interconnect with five
16-bit tracks and five 1-bit
tracks connects the tiles
• Second level memory called

global buffer
• ARM Cortex M3 processor

PE MEM PE MEM

PE MEM PE MEM

PE MEM PE MEM

PE MEM PE MEM

Sy
st

em
 In

te
rc

on
ne

ct

Gl
ob

al
 B

uf
fe

r

CPU

Instruction
Cache

Data
Cache

DMA
Engines

CGRA

3x3 Conv Harris Multichannel Conv

-31.5% -0.7%
-1.03%

-10.2%

-1.90%

Results: Energy per operation

The CGRA consumes 6.92× to
25.3× less energy than the FPGA in
the same TSMC 16 nm technology

CGRAs

Summary

• To facilitate agile hardware design, we need tools to maintain the
end-to-end flow
• This requires hardware generators, clean interfaces, and methods

to communicate changing design features without manual
intervention
• Our DSLs address these concerns by

• Allowing the designer to separately deal with different concerns
• Seamlessly communicating changing design capability to all the layers in our

flow
• The result is an approach to agile hardware design that enables

rapid integration of changing components and shorter design cycles

This work is funded by DARPA’s Domain-Specific SoC (DSSoC) program
and Stanford’s Agile Hardware Center and SystemX Alliance.

