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Motivation

• Digital design tools and methodology have improved dramatically 
letting us create large SoCs with accelerators

• But completing these designs (with software) 
• Takes years
• Costs hundreds of millions of dollars

Dozens of specialized accelerators
Machine Learning
Computational Photography
Video Coding
Cryptography 
Depth Processing

https://www.anandtech.
com/show/14892/the-
apple-iphone-11-pro-
and-max-review/2

Apple’s A13 SoC
8.5 billion transistors 

7 nm

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2


Waterfall Approach to Accelerator Design

• A waterfall approach is still used for most accelerator designs

• Fails when
• Changing application requirements
• Incomplete knowledge/understanding of the problem

Application
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Agile Approach to Accelerator Design
• We explore an agile hardware/software design flow
• Incrementally update the hardware accelerator and software to map to it
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Agile Approach to Accelerator Design
1. Accelerator must be 

configurable
• So we can map new or 

modified applications to it 
(although with lower 
efficiency)

2. Hardware and compiler 
must evolve together
• Any change in hardware 

must propagate to compiler 
automatically
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SoC with a Coarse-Grained Reconfigurable Array
• Our accelerator is an 

island-style CGRA
• Processing element 

(PE) tiles – potentially 
heterogeneous
• Memory (MEM) tiles 
• Statically configured 

interconnect

• Programmable, but 
allows exploiting 
parallelism and 
locality
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Software Compiler

Application Halide Program

Halide Program for a 
3x3 Convolution
Algorithm:
RDom r(0, 3, 0, 3);
output(x, y) += input(x + r.x, y + r.y)

* weight(r.x, r.y)

Schedule:
input.in().store_at(output, y)

.compute_at(output, x);
output.accelerate({input}, y);
output.unroll(r.x).unroll(r.y);

Memory 
hierarchy

Scope of 
accelerator

Which 
loops to 

parallelize

Loop tiling, 
ordering, 

fusion

output

input

F



Software Compiler
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Software Compiler
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Software compiler must evolve with hardware!

Lower
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Depends on the PE and Memory hardware
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Our Key Contribution

• Traditionally, designers create parameterized hardware generators 
that communicate with the software compiler through configuration 
files

• We create mini languages whose semantics are sufficiently expressive 
to communicate both configuration values and how changes to those 
values impact other layers in the system

• Our system has three mini-languages or domain-specific languages 
(DSLs)
• PEak for PEs, Lake for memories, Canal for interconnect



Our DSL-based Hardware Generation and 
Software Compilation Flow
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Our DSL-based Hardware Generation and 
Software Compilation Flow

Lake CompilerPEak Compiler 

PE HW 
in Magma

CGRA Verilog

Lake Program
(MEM spec)

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

MEM HW 
in Magma

Rewrite 
Rules



Our DSL-based Hardware Generation and 
Software Compilation Flow

Lake Compiler Canal CompilerPEak Compiler 
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PEak: PE DSL
PE Functional Specification
class PE(Peak): 

def __init__(self): 
self.o_reg = Register(Data) 
self.f_reg = Register(Bit) 

def __call__(self, inst: Instruction, A: Data, 
B: Data, C: Data, c_in: Bit)->(Data, Bit):
if inst.invert_A: 

A = ~A
if inst.scale_B: 

B = B*C 
if inst.op == Opcode.Add:

res, flag = A.adc(B, c_in)
else: # inst.op == Opcode.And

res = A & B 
flag = (res == 0) 

if inst.reg_out: 
res = self.o_reg(res) 
flag = self.f_reg(flag) 

return res, flag 

PE ISA Specification
class Opcode(Enum): 

Add = 0 
And = 1

class Instruction(Product):
op = Opcode 
invert_A = Bit
scale_B = Bit
reg_out = Bit

# Data is a BitVector
Data = Unsigned[16] 

Specific types (or 
composition of types) for 
operands and instructions 

Define sub-
components 
and state

Define 
desired 
behavior of 
each 
instruction



PEak Specification
PE Python Execution
pe = PE()

inst = Instruction( 
Opcode.Add, 
Bit(0), # invert_A
Bit(1), # scale_B
Bit(0)) # reg_out

out, flag = pe( 
inst, 
Data(2), # A
Data(3), # B
Data(5), # C
Bit(0))  # c_in

assert out == Data(17) 
assert flag == Bit(0) 



PEak Compiler
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Multiple Interpretations of PEak Specification

• PEak program uses 
abstract types provided by 
the PEak DSL such as Bit, 
BitVector etc.
• Each component of the 

PEak compiler provides a 
separate concrete 
implementation of these 
abstract types
• Multiple interpretations of 

a PEak specification in 
different contexts

Python
Context

Functional 
Model

PEak
Program

BitVector

Magma
Context

PEak
Program

RTL

Bits

SMT
Context

PEak
Program

Symbolic 
Representation

(for Rewrite 
Rules)

SMTBitVector



PE Rewrite Rule Generation from Symbolic 
Representation 

CoreIR.Sub

In0 In1

Out

PE

res flag

c_in A B C

∃inst ∀inputs : CoreIR.Op(inputs) == PE(inst,inputs) 

Instruction (
op = Add,
invert_A = True,
…

)

1

Rewrite Rule



Lake: Memory DSL

• Lake memory modules contain 
• One or more memory units
• Blocks that select or combine inputs to create an output
• Graph interconnecting these units to each other and the ports 
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Lake: Memory DSL

Lake
Specification

Hardware RTL 
Verilog

High-level specification for a polyhedral rewrite 
system that uses hardware parameters to optimize 

unified buffers in the application

Hardware
Configuration 

Using an 
SMT solver



High-Level Specification for Polyhedral 
Rewrite System
• For each memory unit, the rewrite system needs to know the
• Memory capacity
• Number of ports
• Port width
• Read/write delay
• Capability of the address generators

! Like nested affine loops (number of loops and constraints on the loop values)

• All extracted from the hardware specification



Polyhedral Rewrite System
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• Canal takes a set of (heterogeneous) PE and memory cores and a directed 
graph-based specification of the interconnect, and generates the 
hardware, the routing graph and the configuration bitstream

Canal Interconnect DSL

Configuration Bitstream
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Garnet SoC

• 32×16 array of PE and 
memory tiles

! Each PE tile has a 16-bit, two-
input, fixed point ALU, and 
some registers

! Each memory tile contains 2 
KB of SRAM and flexible 
address generators

• An interconnect with five 
16-bit tracks and five 1-bit 
tracks connects the tiles 
• Second level memory called 

global buffer 
• ARM Cortex M3 processor 
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3x3 Conv Harris Multichannel Conv

-31.5% -0.7%
-1.03%

-10.2%

-1.90%

Results: Energy per operation

The CGRA consumes 6.92× to 
25.3× less energy than the FPGA in 
the same TSMC 16 nm technology

CGRAs



Summary

• To facilitate agile hardware design, we need tools to maintain the 
end-to-end flow
• This requires hardware generators, clean interfaces, and methods 

to communicate changing design features without manual 
intervention
• Our DSLs address these concerns by 

• Allowing the designer to separately deal with different concerns
• Seamlessly communicating changing design capability to all the layers in our 

flow
• The result is an approach to agile hardware design that enables 

rapid integration of changing components and shorter design cycles

This work is funded by DARPA’s Domain-Specific SoC (DSSoC) program 
and Stanford’s Agile Hardware Center and SystemX Alliance. 


